(1) As a state machine, the D FF has 1 input called $D+1$ clock input 1 output called $Q$


The question specifies that this state machine must be built using J-K FF.
Because the D FF has only two states (which can be considered directly as its output), we will take the output of the
J-K FF to be the out put of our state machine.


The calk signal is connected to the clock input of the J-K FF. (This is always the case for synchronous logic design. The clock inputs of all $F F_{s}$ receive the same CLK signal)
We can draw the state diagram from
the rule that
" $Q$ will follow $D$ "
on the next rising edge of the clock
signal. signal.


The number -. "The number on The number
in here indicate $\mathbb{T}$ the arrow indicate The current state the value of $D$. of the J-K FF

```
Number 1 on the arrow
means }D=1
Num be, 1 inside means
current Q = 1.
For D FF, we know that
The next Q will follow D.
c.. themovt m = & Tו-. :.
```

> So, the next $Q=1$. This is represented by the arrow going back into state value 1.

From the state (transition) diagram, we can read off the values for the mext-state table.


These two columns (Alternatively, we con copy contain all possible the value from the $D$ column combination of $D$ into the "next $Q$ "column and "current $Q$ ". because $Q$ will follow D.)
We use the value of
$D$ and the current value of $Q$ to find the next value of $Q$,

In the circuit below, this is represented by the $Q$ being fed back and the $D$ input being connected into te
 red box shown in the figure here.

The red box above

1) Use the current value of $D$ and $Q$,
2) calculate what should be the next value of $Q$ according to the next-state table above,
3) control the $J, K$ inputs of the $F F$ so that appropriate next value of $Q$ shows up on the output of the J-K FF.

So, the inputs of the red box are $D$ and $Q$ the outputs of the red box are $J$ and $K$.



From the next-state table, we see that if $D=0$ and $Q=0$, we want $Q^{*}=0$.
Because $Q^{*}$ is the output of the JK FF, we need $J=0$ and $K=0$ (hold mode) for the $Q^{*}$ to stay at the same value as $Q$. Alternatively, we con make $J=0$ and $K=1$, in which case, $Q^{*}$ is forced to be 0 because the FF is in RESET mode. In conclusion, if $D=0$ and $Q=0$, we want $J=0$ and $k \stackrel{2}{=} x$; that is both $k=0$ and $k=1$ will work. This idea is summarized in the $1^{\text {st }}$ row of the table below

|  |  | $Q^{*}$ |
| :--- | :--- | :--- |
| 0 | $Q$ | $Q^{*}$ |
| 0 | 0 | 0 |
| 1 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

This is copied from above

At this point, we have the following truth table for the red box:

| $D$ | $Q$ | $J$ | $K$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $x$ |
| 0 | 1 | $x$ | 1 |
| 1 | 0 | 1 | $x$ |
| 1 | 1 | $x$ | 0 |
|  |  |  |  |
|  |  |  |  |


$K$-maps show that $J=D$ and $k=\bar{D}$

Therefore, the red box is simply:


Note the $Q$ (the current state) is not used.
Finally, we put this red box into the circuit
that＇we had drawn before：

（2）In this problem，there are three states，so two FPs should be enough to represent all three states．
（ $n$ FFs con represent $2^{n}$ states）
We will take the output of the counter to be the same as the output of the FF． $\left(Q_{1} Q_{0}\right)$

Next，we construct the the next－state table from the state transition diagram：

| $Q_{1} Q_{0}$ | $Q_{1}^{*}$ | $Q_{0}^{*}$ | $\leftarrow$ Again，the $⿻ 丷 木 斤$ | next．means |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 |  |
| 0 | 1 | 0 | 0 |  |
| 1 | 0 | $x$ | $x$ |  |
| 1 | 1 | 0 | 1 |  |

The question specifies that we must use $D F F$ ．In general，for $D F F, Q^{*}=D$ ．So， from the above table we know that

$$
\begin{aligned}
& D_{1}=Q_{1}^{*} \text { and } \\
& D_{0}=Q_{0}^{*} .
\end{aligned}
$$

Hence，we have the following truth table for the circuit that compute $D_{1}, D_{0}$ from $Q_{1}, Q_{0}$ ：

$K$－maps show that $D_{1}=\overline{Q_{0}}$

$$
D_{0}=\bar{Q}_{0}+Q_{1}
$$

Hence, our final answer is

(3) If I solve problem (2) correctly, the only unknown transition now is the transition from state " 2 " which is left as don't care in the "next-state" table in problem (2).

For state " 2 ", $Q_{1}=1$ and $Q_{0}=0$.
Because $D_{1}=\bar{Q}_{0}$ and $D_{0}=\overline{Q_{0}}+Q_{1}$,
we have

$$
D_{1}=1 \text { and } D_{0}=1
$$

For $D$ FF, " $Q$ follows $D$ "
Hence, $Q_{1}^{*}=1$ and $Q_{0}^{*}=1$,
which is state " 3 ".
So, we know that " 2 " will go to " 3 ".
The complete state diagram is

(4) If we assume that the counter start from state " 2 ", then, from the state diagram that we derived in problem (3) we know

This is the that the counting sequence is counting sequence;
 not the state diagram?
The waveform is drawn below:
BLK
$Q_{0}$


(5) The solution for this problem starts the same way as problem (2) upto the point where we have the next-state table:

| $\theta_{1} Q_{0}$ | $Q_{1}^{*} Q_{0}^{*}$ |  |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | $x$ | $x$ |
| 1 | 1 | 0 | 1 |

The difference between this problem and problem (2) is that we are now required to use JK FFs instead of D FFS.
so, the circuit would be:


Our job is to determine the combinational
circuit inside this box). Again, this
box take the current $Q_{1} Q_{0}$ value and
then compute appropriate $J_{1}, k_{1}, J_{0}, k_{0}$ value
so that the next $Q^{\prime}$ s $\left(Q_{1}^{*} Q_{0}^{*}\right)$ are correct.
We will use the excitation table to help us determine the input to the JK FFs.

first
$Q *$
Excitation table


These are all $x$ because we don't care about where state "2" ....11 - . . +

## row.

we notice that $Q_{1}=0$ and $Q_{1}^{*}=1$
From the excitation table
we must have $/ J_{1}=1, k_{1}=x .4$
will go next.

$$
\begin{aligned}
& \text { Note that } \\
& \text { all index are the same. } \\
& \text { That is, we are working with } \\
& \text { The FF labeled "1". }
\end{aligned}
$$

We can then copy down the truth table for the orange box above:

$$
\begin{aligned}
& \begin{array}{cccccc}
Q_{1} & G_{0} & J_{1} & k_{1} & J_{0} & k_{0} \\
0 & 0 & 1 & x & 1 & x \\
0 & 1 & 0 & x & x & 1 \\
1 & 0 & x & x & x & x \\
1 & 1 & x & 1 & x & 0
\end{array}
\end{aligned}
$$

$K$-maps give $J_{1}=\bar{Q}_{0}, K_{1}=1, J_{0}=1, K_{0}=\bar{Q}_{1}$


If your JK FF has the $\bar{Q}$ output, then we can eliminate the two NOT gates as followed:


Note that when $Q_{1}=1$ and $Q_{0}=0$ (we are at
state "2")

$$
\underbrace{J_{1}=\bar{Q}_{0}=1, k_{1}=1}_{\text {toggle mode }}, \underbrace{J_{0}=1, k_{0}=\bar{Q}_{1}=0}_{\text {SET mode }}
$$

Hence $Q_{,}^{*}=0$ and $Q_{0}^{*}=1$
So, state "2" will go to "1" on the next clock pulse.
The "complete" state diagram is shown

(6) The purpose of the count enable (CTEN) is to allow us to stop (hold) the counting.
For every clock pulse, we check the value of CTEN.
When CTEN $=1$, the counting goes according to what we had in problem (2).

When $C T E N=O$, the counting STOP and we sit at the same state.

The new state diagram become


In this case we want to modify circuit in problem (2) so that it take into account the CTEN signal.

Back in problem (2) we have

$$
D_{1}=\bar{Q}_{0} \text { and } D_{0}=\bar{Q}_{0}+Q_{1} \text {. }
$$

Because in problem (2), the counting always continue, the above equations should hold for us in the case that CTEN $=1$.
(In other words, if CTEN is always " 1 ", then we would observe exactly the same output as in problem (2).)

When CTEN $=0$, we want to hold the value. So,

$$
Q_{1}^{*}=Q_{1} \text { and } Q_{0}^{*}=Q_{0}
$$

To do this, because $Q^{*}=D$ for $D F F$, we connect

$$
D_{1}=Q_{1} \quad \text { and } \quad D_{0}=Q_{0}
$$

Hence, we have two cases:
when $C T E N=1, D_{1}=\bar{Q}_{0}$ and $D_{0}=\bar{Q}_{0}+Q_{1}$
when $C T E N=0, D_{1}=Q_{1}$ and $D_{0}=Q_{0}$
These can be combined into

$$
\begin{aligned}
& D_{1}=C T E N \cdot \bar{Q}_{0}+\overline{C T E N} \cdot Q_{1} \\
& D_{0}=C T E N \cdot\left(\bar{Q}_{0}+Q_{1}\right)+\overline{C T E N} \cdot Q_{0} \quad \begin{array}{l}
\text { simplify it one } \\
\text { mure step. }
\end{array} \\
& =C T E N \oplus Q_{0}+C T E N \cdot Q_{1}
\end{aligned}
$$

(You can check them by letting CTEN $=0$
or by letting CTEN=1)
The modified circuit become

(7) This is the same as problem (6) except that we now have to deal with JK FF.

It turns out that this case is even easier.
When $C T E N=1$, we keep the same connection. (eg. for $J_{1}$, it is $\bar{Q}_{0}$ )

When CTEN = 0, we want to hold and therefore all JJ values must be 0 .

Hence, the combined expression is

$$
\begin{aligned}
& J_{0}=C T E N \cdot 1+\overline{C T E N} \cdot 0=C T E N \\
& K_{0}=C T E N \cdot \overline{Q_{1}}+\overline{C T E N} \cdot 0=C T E N \cdot \overline{Q_{1}} \\
& J_{1}=C T E N \cdot \bar{Q}_{0}+\overline{C T E N} \cdot 0=C T E N \cdot \overline{Q_{0}} \\
& k_{1}=C T E N \cdot 1+\overline{C T E N} \cdot 0=C T E N
\end{aligned}
$$



Part B
(18) I will only show the necessary steps in this
problem.

First, we construct the next-state table:


> This becomes the truth table for the circuit
> that produces $J_{1}, k_{1}, J_{0}, k_{0}$.

The corresponding $K$-maps are

$$
\begin{aligned}
& J_{1}=1 \quad K_{1}=1 \quad J_{0}=Q_{1} \quad K_{0}=Q_{1}
\end{aligned}
$$

Hence, the circuit for the counter is


